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9.1. INTRODUCTION 

Since Solow’s (1956) contribution, continuous time descriptive macro-
economic growth models have proved to be not only cornerstone 
contributions to economic growth theory but also, once amended to include 
realistic refinements such as human capital, very useful tools for the 
empirical analysis of growth (Barro and Sala-i-Martin, 1995; Mankiw et al., 
1992 and subsequent contributions). Another fundamental descriptive model 
is Goodwin’s (1967) growth-cycle, which represents the paradigm of non-
linear dynamics in economics. 

In descriptive macroeconomic growth models population plays an 
important role – through the growth of the labour supply it triggers the 
growth of absolute output – yet it is taken as fully exogenous to the 
economic system. Despite the large number of papers aiming to endogenise 
population in macroeconomic growth models, the main feature of the 
demographic system, i.e. age structure, has, with few exceptions, been 
neglected or dealt with in an oversimplified manner, as for instance in 
Overlapping Generation Models. This is a somewhat odd fact given that, at 
least from Malthus (1798) onwards, the role of age structure as the ‘conveyor 
belt’ linking economic shocks, their demographic response, for instance in 
terms of fertility, and their ultimate feedback on the economic system, was 
well present to classical economists. For instance, McCulloch (1854, p. 34) 
stated ‘the supply of labourers in the market can neither be speedily 
increased when wages rise, nor speedily diminished when they fall. When 
wages rise a period of eighteen or twenty years must elapse before the 
stimulus, given the principle of population, can be felt in the market’. 
McCulloch’s description provides the first definition of the causal factor 
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underlying the fundamental demo-economic concept of Malthusian cycles, 
which are the consequence: ‘...of the lags between the response of fertility to 
current labour market conditions and the time when the resulting births 
actually enter the labour force’ (Lee 1997, p. 1097). Malthusian cycles are a 
major example of demo-economic oscillations and a well documented fact in 
population economics. See for instance the oscillations of birth, death and 
wage rates in UK history (Lee and Anderson, 2002, p. 201), the Swedish 
cycles 1700–1914, and the post-transitional fertility fluctuations, such as the 
baby-booms observed in the Western world in the 1960s, sometimes 
explained by Easterlin’s effect (Easterlin, 1978). 

There are some exceptions to the paucity of theoretical studies of the 
dynamic interplay between the population age structure and macro-
dynamics. Several papers have been devoted to the search for Easterlinian 
mechanisms leading to sustained Malthusian oscillations (Lee, 1974; 
Samuelson, 1976; Frauenthal and Swick, 1983; Feichtinger and Sorger, 1989 
and 1990; Feichtinger and Dockner, 1990; Chu and Lu, 1995). Most such 
works, however, are simplistic in that they include the economic system only 
implicitly through some non-linear demographic relationship. Manfredi and 
Fanti (2006a; 2006b) made a more genuine attempt to integrate the age 
structure of the population and the macroeconomic structure, within 
Goodwin’s model. In order to end up with a tractable model (i.e. described 
by ordinary differential equations, ODEs) they used a simplified 
representation of age structure by considering three additional differential 
equations modelling the main phases of the individual life cycle, namely 
youth, adulthood, and retirement. The ensuing model shows a clear-cut  
dynamic effect of age structure on growth, particularly as regards the 
generation of stable or chaotic Malthusian oscillations around the path of 
balanced growth of the economy. 

In a different vein Arthur and McNicoll (1977) considered the issue of the 
optimal control of the economy in a fully age-structured population from a 
central planner’s perspective. The same authors (1978) also initiated the 
study of the implications of the dynamics of age structure on the 
performance of the economy. Their approach has become the standard route 
to investigate the implication of demographic change, such as the onset of 
below replacement fertility and ageing in industrialised countries, on 
economic profiles (Lee, 1994; Lindh and Malmberg, 1999; Miles, 1999; 
Prskawetz and Fent, 2007). More recently the role of age structure has also 
been considered within micro-founded growth models, for instance in the 
‘vintage human capital approach’ (Boucekkine et al., 2002), which shows 
that (exogenous) mortality decline in history could have been a factor of 
sustained endogenous growth. 
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This chapter explores the implications of age structure for macroeconomic 
growth. As a first step we build a general framework embedding the age 
structure of the population in descriptive growth models in a fully realistic 
manner. We do this by (1) considering a generic model of descriptive macro-
economic growth and the fundamental equation for the dynamics of a closed, 
age structured, population, i.e. the Von Foerster partial differential equation 
(PDE), and (2) integrating them by appropriately modelling the main link 
function between the economic and demographic systems, i.e. the rate of 
change of the labour supply. Compared to other works in the literature our 
approach is fully general. Second, we seek a mathematically convenient 
reformulation of our model and start to investigate its main dynamic 
implications, looking at the existence of stationary states, i.e. joint 
population-economy balanced growth paths, in selected examples. In 
particular, we consider a basic case of no feedback from the economic 
system on demographic behaviour, useful to state the demographic 
assumptions underlying classical exogenous growth models, and a Solow-
type model with endogenous fertility modelled as a declining function of per-
capita income, as observed during the demographic transition. The model 
shows the possibility of many equilibria, some of which appear as a 
consequence of correctly taking age structure into account, i.e. the fact that 
equilibrium per-capita income is the outcome of both capital dilution and 
intergenerational transfer effects (Arthur and MacNicoll, 1978). This gives 
an insight on issues such as the optimum population growth rate, and the 
overall structure of balanced growth equilibria. Some remarks on the 
potential of our model for studying the role of age structure for growth are 
also added. 

The chapter is organised as follows. Section 9.2 introduces our general 
framework. In Section 9.3 we seek a mathematically convenient formulation. 
In Section 9.4 we consider some selected case-studies. Some conclusions are 
drawn in Section 9.5. 

 
 

9.2. A GENERAL FRAMEWORK FOR DESCRIPTIVE 
MACROECONOMIC GROWTH WITH AGE 
STRUCTURE 

9.2.1. Descriptive Models of Macroeconomic Growth 

The most influential descriptive growth schemes are the neoclassical model 
of Solow (1956) and the growth cycle (Goodwin, 1967). Descriptive models 
are described by systems of non-linear ODEs of the form 
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 � �;X H X Z �  (9.1) 

where 1 2( , ,..., )nX x x x  is the vector of key economic variables (capital per 
worker, employment, wage share, etc), H a suitable map, and Z a constant 
vector reflecting the steady input provided by the constant exogenous growth 
of labour supply and technology. In this paper we assume for simplicity that 
Z just includes population growth. 

Descriptive models show exogenous growth, i.e. growth is promoted by 
variables such as the total labour supply and the level of technology, which 
are exogenously defined (exponentially growing over time). In other words, 
such models explain the mechanics of economic growth provided there is a 
steady, unexplained, input of population and technology.  

Example 1 (Solow’s 1956 model without technical progress). In this case X 
is one-dimensional and is given by the amount of capital per worker 

/K L k  and H is the map: 

 � � � � � �;H k Z sf k Z d k � �  (9.2) 

where f  is a constant returns to scale neoclassical production function (in 
intensive form), s the saving ratio, Z n  the growth rate of the labour 
supply, and d  the rate of capital depreciation. 

Example 2 (Goodwin’s 1967 growth cycle model). X is the 2-dimensional 
vector (E,V), where E is the employment rate at time t, defined as the ratio 
between the labour actually employed L and the supply of labour ,sN  while 

/V w A  is the labour share, where w is the real wage and A average labour 
productivity. The model is 

 � �1 SE E m V nD⎡ ⎤ � � �⎣ ⎦
�   

 � �V V ED J U⎡ ⎤ � � �⎣ ⎦
�   

where 0 J U� �  are the parameters of the ‘real wage’ Phillips’ curve: 
'/ ( )w w ED J U � � �  governing the relationship between the growth rate of 

the wage and the employment rate, 0m !  is the output–capital ratio, and 
0,D ! 0sn !  respectively denote the rate of change of labour productivity 

and the labour supply. In this case 1 2( , ) ( , ).SZ Z Z nD   
Solow’s and Goodwin’s model can be integrated to obtain flexible 

families of growth models: for instance replacing Goodwin’s assumption of a 
Leontief technology with a neoclassical CES production function (Van der 
Ploeg, 1988) one obtains a family of descriptive neoclassical models with 
unemployment (Fanti and Manfredi, 2003). 
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9.2.2. Endogenisation of Age Structure 

We start from the fact that under our assumptions the rate of change Z of the 
labour supply Q:  

 
� �
� �

Q t
Z

Q t
 
�

  (9.3) 

is the only direct ‘link function’ between the economic sub-system and the 
demographic one. The labour supply is defined as: 

 � � � � � �
� �

� �
, ,

B X

A X

Q t a X n a t daJ ∫  (9.4) 

where a denotes an individual’s age, ( , )n a t  is the age density of the 
population at time t� ( , )a XJ  the participation rate (i.e. the fraction supplying 
labour at each age), and the interval ( ), ( )( )A x B x  defines the work age span. 
The latter is, at least in principle, endogenously determined, as a 
consequence of workers’ choice. The population is assumed to be closed to 
migration such that its age density obeys Von Foerster’s PDE (Keyfitz, 
1985): 

 
� � � � � � � �, ,

, , ,
n a t n a t

a X N n a t
a t

P
� �

�  �
� �

 (9.5) 

where ( , , )a X NP  is the age-specific mortality rate, which is taken as a 
function of the economic variables, and of some summary measure of the 
population state, for instance the total population � �0

( ) , .N t n a t da
� ∫  The 

PDE (9.5) describes the dynamics of the age density ( , )n a t  following the 
ageing process of individuals along their birth cohort over time. Intuitively 
during each time interval ( , )t t h�  the individual of age a at the beginning of 
the interval will have age a h�  at the end of the interval. In other words, the 
life course of a given individual is represented in the time-age plane by the 
45-degree segments originating on the a-axis at the time of birth of the 
individual (and obviously ending at his/her death). This means that the 
natural way to consider the evolution of the age density ( , )n a t  during 
( , )t t h�  is by looking at the variation ( , ) ( , ).n n a h t h n a t'  � � �  In the 
absence of migration this variation will only be due to mortality. If the 
function ( , )n a t  is regular, n'  can be expanded, for a small enough h, as 
( / ) ( / ) .n a h n t h� � � � �  During the same interval some individuals will be 
removed by mortality, at a rate given by ( , , ) ( , ) .a X N n a t hP  Letting h go to 
zero finally explains equation (9.5). The PDE (9.5) needs to be completed by 
a boundary condition, which specifies the rate at which new individuals enter 
the system at age zero, through births. This is given by the birth equation 
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 � � � � � � � �
0

0, , , ,n t B t a X N n a t daE
�

  ∫  (9.6) 

where ( )B t  is the birth function at time t, and ( , , )a X NE  the age-specific 
fertility rate. Equations (9.1), (9.3), (9.5), (9.5) and (9.6) define the general 
form of a descriptive macroeconomic growth model with a fully endogenous 
age structure, summarised below: 

 � � � �,X H X t Z t⎡ ⎤ ⎣ ⎦
�  (9.7a) 

 � � � �
� �

Q t
Z t

Q t
 
�

 (9.7b) 

 � � � �
� �

� �

� �, ,
B X

A X

Q t a X n a t daJ ∫  (9.7c) 

 � � � � � �, , , ,n a t a X N n a t
a t

P� �⎛ ⎞�  �⎜ ⎟� �⎝ ⎠
 (9.7d) 

 � � � � � � � �
0

0, , , ,n t B t a X N n a t daE
�

  ∫  (9.7e) 

Some remarks are useful to clarify the point. Equations (9.7) show the 
main ingredients of the problem: (a) the dynamics of the economy, given by 
equations (9.7a), which depend on the ‘link’ function ( );Z t  (b) a definition 
for the link function, as the rate of change of the labour supply (eq. (9.7b)); 
(c) a definition for the labour supply (eq. 9.8c); (d) the dynamics of the 
population (eq. (9.7d)–(9.7e)). In (9.7) the demographic rates (.), (.)E P  and 
the participation rate (.)J  are endogenously determined through possibly 
non-linear dependencies on their economic inputs. From the viewpoint of 
non-linear population mathematics, (9.7) is an extension of the classical non-
linear age-dependent model first considered by Gurtin and MacCamy (1974). 
The main difference is that (9.7) includes the external control factors, only 
implicitly included by Gurtin and MacCamy, in an explicit manner according 
to an underlying theory of demo-economic interaction. However, Gurtin and 
MacCamy (1974) were mainly interested in the conditions under which 
density-dependent conditions were responsible for the onset of a (locally) 
stable equilibrium age distribution. Here we are mainly interested in the 
conditions yielding joint persistent solutions of the demographic and 
economic sub-system (called stable solutions in demographic jargon, and 
‘balanced growth’ solutions in the economic jargon), and of course on 
whether other types of solutions, such as steady demo-economic oscillations, 
are possible. The dependency of vital rates on the total population N 
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summarises the possible presence of economic feedbacks not captured by X, 
or of density-dependent effects (see Gurtin and MacCamy, 1974 for the age-
structured extension of the logistic equation of classical population 
mathematics). We further note that the adopted demographic equation is a 
one-sex equation, as in standard population mathematics. This means that 
(9.7d) and (9.7e) may be inadequate when differential patterns by gender are 
assumed. 

Initial value problems for (9.7) require initial conditions for the economic 
variables X, and the specification of an initial (i.e. at time t = 0) age 
distribution for the population, of the form ( ,0) ( ),n a a\  specifying the 
density of individuals in age group a at the initial time. 

 
 

9.3. A CONVENIENT FORMULATION FOR THE 
DEMOGRAPHIC COMPONENT 

We first look for a convenient formulation of the demographic part of (9.7). 
The purpose is to simplify the problem by removing components which are 
unnecessary to understanding the dynamics. We do this in several steps. First 
we assume that the mortality rate can be written as: 

 � � � � � �1 2, , , ,a X N a a X NP P P �   

i.e. as the sum of a ‘normal’ or baseline component, which is only age-
dependent, and of a component also reflecting the action of the economic 
system. This implies that the overall survival function ( , )a tS , representing 
the probability of surviving up to any age a at time t, can be factored as  

 
� � � � � � � �^ `

� � � �

1 2
0 0

1 2

, exp exp , ,

,

a a

a t s ds s X t a s N t a s ds

a a t

S P P

S S

⎡ ⎤ ⎛ ⎞
⎡ ⎤ ⎡ ⎤ � � � � � �  ⎜ ⎟⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎝ ⎠
 

∫ ∫   

where 1( )aS  defines survival to ‘normal mortality’. Let us now introduce the 
following change of variable: 

 � � � �
� �1

,
,

n a t
u a t

aS
  (9.8a) 

 � � � �
� �
,

,
u a t

q a t
Q t

  (9.8b) 

Both ( , )u a t  and ( , )q a t  are useful auxiliary quantities to deal with our 
general framework. The first is defined by the ratio between the absolute 



198 Institutional and social dynamics of growth and distribution 

 

(non-normalised) population density and the survival probability to baseline 
mortality 1( ).aS  Therefore when 1( ) ( ),a aS S , i.e. when the overall 
mortality is only age-dependent, since � � � � � �aatBtan S� ,   holds, then 

( , ) ( ),u a t B t a �  i.e. it coincides with past births occurring a years ago. In 
general, ( , )u a t  represents a population density for which the pure age-
dependent component of the risk of mortality has been removed, and only 
exposure to the economic-dependent component 2( , , )a X NP  remains, as 
clear from the first of subsequent equation (9.9). 

On the other hand, ( , )q a t  is obtained by dividing ( , )u a t  by the total 
labour supply Q(t). Therefore if we only focus on the work age span (still on 
the assumption that 1( ) ( )),a aS S  ( , )q a t  may be considered the component 
of the current total labour force Q(t) coming from births occurring a years 
ago, a quantity of strong interest from the demo-economic point of view. 
Note that ( , )q a t  is an improper density function. 

A partial differentiation shows that ( , )u a t  and ( , )q a t  satisfy the 
following Von Foerster PDEs 

 � � � �2 , , ,a tu u a X N u a tP�  �  (9.9a) 

 � � � � � �, , ,a tq q a X N Z t q a tP⎡ ⎤�  � �⎣ ⎦  (9.9b) 

with boundary conditions: 

 � � � � � �1
0

0, , , ,u t m a X N u a t da
�

 ∫   

 � � � � � �1
0

0, , , ,q t m a X N q a t da
�

 ∫   

where: 

 � � � � � �1 1, , , ,m a X N a X N aE S   

In addition, using (9.8a) the overall labour supply can be rewritten as: 

 � � � �
� �

� �

� �1 , ,
B X

A X

Q t a X u a t daG ∫   

where: 

 � � � � � �1 1, ,a X a X aG J S  (9.10) 

Moreover, by (9.8b) one gets the constraint: 

 � � � �1
0

, , 1a X q a t daG
�

 ∫  (9.11) 
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Finally, let us seek an expression for the growth rate of the labour supply 
Z. For simplicity we take ( ) 0, ( ) .A X B X  �  Indeed, though the ages of 
entry/exit into/from the labour market are choice variables from the 
individual’s point of view, perhaps bounded by some minimal and maximal 
‘institutional’ age, by suitably endogenising the participation rate at each age 

( , ),a XJ  essentially any pattern of work participation by age can be 
described. 

By a time differentiation of (9.15), and treating for simplicity X as a scalar 
variable, one finds: 

� � � � � � � � � � � � � � � �1
1 2 1

0 0 0

,
, , , , , , ,a

a X
Q t X u a t da a X u a t da a X N a X u a t da

X

G
G P G

� � ��
 � �

�∫ ∫ ∫� �

  (9.12) 

The last expression implies that /Z Q Q �  can be written as: 

 1 2 3Z Z Z Z � �   

where: 

 
� � � �1

1
0

,
,

a X
Z X q a t da

Y

G� �
 

�∫�   

 � � � �1
2 1

0

, ,aZ Q a X u a t daG
�

� � ∫   

 � � � � � �3 2 1
0

, , , ,Z a X N a X q a t daP G
�

 �∫   

Examples can be of help in interpreting the quantities iZ . The term 3Z  is 
the (average) component of the mortality rate which is affected by economic 
inputs. This becomes clear by taking 2X  independent of age: 

2 2( , , ) ( , ).a X N X NP P  In this case, thanks to (9.11), the following simply 
holds: 

 � � � � � � � � � � � � � �3 2 1 2 1 2
0 0

, , , , , , , ,Z a X N a X q a t da X N a X q a t da X NP G P G P
� �

   ∫ ∫   

The term 2Z  depends on the assumptions actually made on the rate of 
participation to the labour force J. For instance, if J is compactly supported 
over (A,B) and discontinuous at A,B (e.g. when there are minimal/maximal 
‘institutional’ ages of entry and exit into/out of the labour force), we get by a 
parts integration over age 
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 � � � � � � � � � � � �2 1 1 1, , , , , ,
B

A

Z a X q a t da A X q A t B X u B t
a

G G G�⎡ ⎤ � �⎢ ⎥�⎣ ⎦∫  (9.13) 

The latter expression is the balance of the entries in the labour force at the 
minimal legal age (A), the exits at the maximal age (B), and the relative 
changes occurring in the participation rate over age. The latter term reflects 
the compositional effect that arises as the participation rate is not constant 
over time. If the participation rate is only age-dependent (9.13) reduces to: 

 � � � �
� � � � � � � � � � � � � �
'

2
0

, , ,
a

Z t a q a t da A q A t B q B t
a

G
G G G

G

� ⎡ ⎤
 � �⎢ ⎥

⎢ ⎥⎣ ⎦
∫   

where the first term is easily seen to be the average of the rate of change of 
the participation rate over age. Finally the 1Z  term is the component of the 
overall growth rate of the labour supply due to time changes in its economic 
determinants X. 

To sum up we have written the dynamics of the demographic component 
in the following manner 

 � � � �� � � �2 , , ,a tq q a X N Z t q a tP�  � �  (9.14a) 

 � � � � � �1
0

0, , , ,q t m a X N q a t da
�

 ∫  (9.14b) 

 
� � � � � � � �1 1

1
0 0

,
, , ,a

a XQ
Z X q a t da Q a X u a t da

Q X

G
G

� �
��

  � �
�∫ ∫

� �  

 � � � � � �2 1
0

, , , ,a X N a X q a t daP G
�

� ∫  (9.14c) 

plus the constraint (9.10).  
The reformulation (9.14) has some advantages. First it uses the ‘profile’ 

variable q instead of the absolute age density ( , ).n a t  This has some 
implications for the search of stable (or persistent, or ‘balanced’) solutions 
for the population. In terms of the absolute profile these are separable 
solutions of the form ( , ) ( ) rtn a t G a e  implying the exponential growth (or 
decay) of absolute variables (e.g. overall population, labour supply, total 
births, population in each age group) but unchanging age profiles. In fact, if 
we look for instance at the profile of the overall population, i.e. the 
normalised population density ( , ) ( , ) / ( ),c a t n a t N t 1 the previous position 
implies 

0
( , ) ( )/ ( ) .c a t G a G a da

� ∫  This means that the profile is unchanging 
over time, i.e. the exponential growth is ‘balanced’. Clearly, under (9.14a) 
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such type of solutions correspond to steady states of the profile q. Second, a 
comparison of (9.14a) with the PDE for the normalised population density 

( , ) ( , ) / ( ),c a t n a t N t  given by: 

 � � � �2 , , ,a t

N
c c a X N c a t

N
P⎡ ⎤

�  � �⎢ ⎥
⎣ ⎦

�
  

indicates that the growth rate of the overall population in the balanced 
growth state, / ,r N N �  must always equal the growth rate Z of the labour 
supply. Last, ‘stable’ balanced growth solutions are the only form of 
stationary solutions of (9.14). 

 
 

9.4. SOME EXAMPLES 

9.4.1.  The Case of no Economic Feedback on the demographic 
System: Asymptotic Balanced Growth of the Economy Forced 
by Balanced Population Growth 

Under constant coefficients 

  � � � � � � � � � � � �, , , , , , ,a X N a a X N a a X aP S E E J J    

no feedback from the economic system is assumed, i.e. vital (mortality and 
fertility) and participation rates are unaffected by the economic conditions. 
This case is not economically trivial, as it shows the proper demographic 
background underlying the standard formulations of descriptive models of 
economic growth. Moreover, on the applied side, it represents the theoretical 
framework underlying the common investigations of the impact of changes 
in the age composition of the population on economic performance under the 
so-called ‘constant vital rates scenario’ which are usually supplied by all 
agencies providing demographic projection (Miles, 1999; Prskawetz and 
Fent, 2007).  

In this case the demographic component is independent of the economic 
one. Thus we may first characterise the evolution of the demographic 
component, and then take its output Z*(t) to characterise the economic sub-
system as follows: 

 � � � �*,X F X t Z t⎡ ⎤ ⎣ ⎦
�   

The corresponding long-term dynamics obeys: 

 � � *,X F X t Z�⎡ ⎤ ⎣ ⎦
�   
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In particular, denoting for brevity 1( ) ( )a aG G , the rate of change of the 
labour supply simplifies to: 

 � � � �
� � � � � � � � � � � � � �
'

0

, , ,
a

Z t a q a t da A q A t B q B t
a

G
G G G

G

� ⎡ ⎤
 � �⎢ ⎥

⎢ ⎥⎣ ⎦
∫   

The final form for the demographic system is: 

 � �, 0� �  a tq q Zq a t  (9.15a) 

 � � � � � �1
0

0, ,
�

 ∫q t m a q a t da  (9.15b) 

 � � � �
� � � � � � � � � � � � � �
'

0

, , ,
G

G G G
G

�⎡ ⎤
 � �⎢ ⎥

⎣ ⎦
∫

a
Z t a q a t da A q A t B q B t

a
 (9.15c) 

plus the constraint (9.12). We now look for stable solutions for the 
demographic component. As already pointed out, such solutions have the 
form: 

 � � � �, rtn a t G a e   

This implies the following relationships: 
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 � � *' rtQ t rQ e   

 � � � �,q a t a <   
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 � � *Z t Z   

where ( )a<  is a function of age such that  
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Note in particular that from the definition of Z it follows that its stable 
form is given by 

 
� �
� �

* Q t
Z r

Q t
  
�

  

which confirms that if the population is stably evolving at rate r then the 
overall labour supply must evolve at the same rate. In particular, (9.15a) and 
(9.15b) can be written, using the equality * ,Z r  as  

 � � � �' 0a r a< � <    

 � � � � � �1
0

0 m a a da
�

<  <∫   

This gives: 

 � � � �0 raa e�<  <   

and therefore 

 � � � � � �1
0

0 0 ram a e da
�

�<  <∫  

which yields 

 � �1
0

1 ram a e da
�

� ∫   

Recalling that 1 1( ) ( ) ( )m a a aE S  we obtain 

 � � � �
0

1 raa a e daE S
�

� ∫   

The previous expression is a standard Lotka intrinsic equation defining 
the asymptotic, or ‘intrinsic’, growth rate of the population in its stable state. 
Therefore the population eventually achieves a state of stable balanced 
growth where absolute variables (population size by age group and total, 
births, overall labour supply, etc.) grow asymptotically at rate *,r Z  
keeping an unchanging age profile.  

The previous discussion has provided the proof of the following result: 

Proposition 1 (case of constant coefficients). If 2 2( , ) ( ),a Y aP P  
( , ) ( ),m a Y m a  ( , ) ( ),a Y aJ J  then the demographic sub-system decouples. 

In this case: 
All equilibrium solutions of the demographic system are stable solutions, 

i.e. the demographic system eventually approaches a stable growth path with 



204 Institutional and social dynamics of growth and distribution 

 

a speed of growth given by Lotka’s intrinsic growth rate r. In particular 
* .Z r�   
The solution of the economic subsystem, described by the non-

autonomous equation: > @, ( )X H X Z t �  converges asymptotically to the 
solution of the asymptotically autonomous system:  

 � �rXHX , �   

Thus, for instance in the case of Solow’s model, the classical Solow’s 
dynamics would arise only asymptotically as a consequence of the 
stabilisation of the dynamics of the population about its stable state, and it is 
driven by the following asymptotically autonomous map 

 � � � � � �krdksfkH r ��   

On the other hand, the transient phase would be disturbed by the 
adjustment oscillations of the age distribution, the classical ‘stable echoes’. 

  
9.4.2. A Solow-type Model with Endogenous Fertility: Joint Balanced 

Growth Solutions of the Economy and Population 

We now consider an economy governed by the standard Solow equation 
(9.2) under a constant returns to scale (CRS) Cobb–Douglas production 
function. As regards the demographic component, we assume that fertility is 
endogenously related to per capita income / ,y Y N  where Y is absolute 
output, as largely justified on empirical grounds. Though we will simply take 
the relation between fertility and income as given, since our interest is in its 
dynamic implications and not in its microfoundations, it can nonetheless be 
microfounded both in a traditional, namely Malthusian, perspective, yielding 
an increasing relation between the fertility rate and income, and in a modern, 
say Beckerian perspective (Becker and Barro 1988, Becker et al. 1990), 
where it yields a decreasing relation between fertility and income. Jones 
(2001) microfounded a humped relation between the fertility rate and per-
capita income which explains the increase in fertility sometimes seen at the 
onset of the demographic transition (Dyson and Murphy 1985).  

Here we consider the special but important case: 1 2( , ) ( ) ( )a y a yE E E , i.e. 
changes in per capita income only affect the scale of fertility, represented by 
the gross reproduction rate 2 10

( ) ( ) ( )GRR y y a daE E� ∫  (GRR), but not the 
age density at childbearing. This is a simplification as we know from 
empirical studies, in that timing of fertility is related to economic conditions 
as well. In addition we take only age-dependent mortality and participation. 
The final form of the system is 
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∫

∫
  

where L is labour demand, taken as identically equal to labour supply, wy  
the output per worker, and E the ratio between the population actually 
employed and the total population. 

Model (9.16)–(9.17) encompasses many theoretical and simulations 
models used in the descriptive demo-economic literature. For instance, 
Solow-type models with endogenous fertility but without age have been used 
to represent the demographic transition (Strulik, 1997, 1999, 2000; 
Prskawetz et al., 2000; Fanti and Manfredi, 2003). The above model includes 
age in such frameworks. On the other hand, model (9.16)–(9.17) represents 
the full dynamic system underlying the macro-simulative approaches used in 
the literature on the impact of age structure on macroeconomic performance 
(Arthur and MacNicoll, 1978; Blanchet, 1988; Miles, 1999; Prskawetz and 
Fent, 2007). 

Let us look at joint balanced growth solutions of the economy and the 
population. By this description we mean solutions characterised by (a) stable 
exponential growth of all absolute variables (i.e. both demographic, as in the 
previous example, and economic), and (b) unchanging age profiles of the 
demographic variable, as a consequence of the position ( , ) ( ) ,rtn a t G a e  and 
steady state growth of the per-worker economic variable. In particular, since 
we are considering a Solow model without technical progress, a balanced 
growth solution of the economy is simply a steady state of the fundamental 
equation corresponding to a stationary value of Z allowed by an underlying 
exponential growth of the overall labour supply. From  

 � � 0sk Z d kD � �   (9.16) 
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as wy kD , we find 
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w

s
y

d Z

D
D�⎛ ⎞ ⎜ ⎟�⎝ ⎠

 (9.17) 

In addition Z must be defined as the intrinsic growth rate of a stably 
growing population, i.e. Z = r must hold. Setting as before ( , ) ( ) rtn a t G a e  
we get:  
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y E

r d

D
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 (9.18a) 
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∫

∫
 (9.18b) 

 � � � �' a r a<  � <  (9.18c) 

 � � � � � � � � � �2 1
0

0 y a a a daE E S
�

<  <∫  (9.18d) 

Joint balanced growth solutions, if any, arise from system (9.19), where 
there is the additional complication that the equilibrium value *E  of E is 
itself a function of the population growth rate in the balanced growth state. 
From the two latter equations one finds: 

 � � � � � �2 1
0

1 ray a a e daE E S
�

� ∫  (9.19) 

which, using (9.18a) and (9.18b), yields the following ‘expanded’ intrinsic 
equation: 

 � �� � � � � �2 1
0

1 ray r a a e daE E S
�

� ∫  (9.20a) 
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∫

∫
 (9.20b) 

A careful discussion of (9.20) requires that we distinguish among the 
various possibilities as regards the shape of the 2(.)E  function, describing 
how fertility rates by age are scaled by changing levels of income per capita. 
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If 2(.)E  is taken to be a monotonic function of income, a simpler discussion 
of (9.20) can be obtained by setting 

 � � � � � �1
0

rag r a a e daE S
�

� ∫   

and solving for income per capita: 

 � � � �
1

2

1
y r

g r
E � ⎛ ⎞

 ⎜ ⎟⎜ ⎟
⎝ ⎠

 (9.47) 

In this case the lhs of the previous expression relates possible equilibrium 
levels of per-capita income to the population growth rate in a stable 
population. Such a relation has a noteworthy shape due to the interaction 
between so-called capital dilution (CD) and intergeneration transfer (IT) 
effects (Arthur and MacNicoll 1978, Blanchet 1988, Manfredi and Fanti 
2005). This relation can take, even in the simplistic case of a flat 
participation rate over (A,B), the shape in Fig. 9.1, with very high levels of 
income per capita when r approaches its lower bound (–d), i.e. when the CD 
effect certainly dominates, then as r increases y(r) approaches a Worst 
Population Growth Rate (WPGR), an Optimum Population Growth Rate 
(WPGR), and finally steadily declines and approaches zero for very large r. 

Per-capita income in Solow model: onset of OPGR,WPGR at low capital shares (a = 
0.2) for distinct ages A of entry in the labour market (s = 0.2, d = 0.05)
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Figure 9.1. Income per capita as a function of the equilibrium population 
growth rate in a stable population 
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On the other hand, since g(r) is monotonically decreasing in r, the rhs will 
be a decreasing function of r when 2(.)E  is decreasing in income per capita, 
while it will be increasing in r when 2(.)E  is increasing. Though 
computations of the solutions of (9.47) are still to be carried out under 
realistic parameter values, potentially interesting demo-economic findings 
are suggested. For instance, consider the case of the decreasing S-shaped 

2(.)E  function, starting from high fertility levels at very low levels of per 
capita income, then decreasing initially rapidly as income increases, and 
subsequently slowing down and plateauing at a lower level for very high 
levels of income per capita. Such a form broadly corresponds to the 
conventional demographers’ description of the demographic transition 
(Keyfitz, 1985; Chesnais, 1987), and has been used in descriptive economic 
models of the demographic transition (Strulik, 1997, 1999, 2000; Prskawetz 
et al., 2000). In this case equation (9.49) may have multiple solutions, each 
corresponding to a possible state of joint balanced growth of the population 
and the economy. For example, a frequent case shows five solutions (Fig. 
9.2). Though no formal stability analysis was carried out it is tempting to 
interpret the equilibrium with a high rate of population growth 1( )E  as a 
(locally stable ?) Malthusian trap, the one with the intermediate rate of 
population change 3( )E  as a (locally stable?) post-transitional equilibrium 
with population growth not too far from stationarity, and finally the 
equilibrium with very low, largely negative, growth rate 5( ),E  as a (locally 
stable?) ‘super-modern’ equilibrium, a sort of ‘richness trap’ characterised 
by sustained below-replacement fertility, as currently spreading in much of 
the industrialised world (Billari and Kohler, 2004). 

The previous results raise interesting considerations as regards the debate 
on multiple equilibria of the population-economy system in history, the 
existence and escape from the Malthusian trap, and modern growth regimes.  

The possibility of three equilibria (a locally stable Malthusian trap, an 
intermediate unstable equilibrium and a stable regime of modern growth) is a 
common result in Solow-type models of the demographic transition (Strulik 
1997, 1999, 2000; Fanti and Manfredi 2003). Here it is suggested that the 
incorporation of age structure might lead to the appearance of two further 
equilibria, one of which might be interpreted as a ‘richness trap’ with 
sustained below-replacement fertility. This phenomenon is the consequence 
of correctly taking into account the dependence of fertility on per-capita 
income, as a consequence of the peculiar relation between equilibrium levels 
of income per capita and regimes of population growth. 

The discussion also indicates that once one takes properly into account the 
overall dynamic interaction between the economic system and the 
demographic one then: a) the curve y(r) will not anymore to be interpreted, 



 Endogenous age structure in descriptive macroeconomic growth models  209  

 

as traditionally done, as a locus of equilibria; b) the WPGR and OPGR will 
not be equilibrium solutions, unless by chance. 
 

 
Figure 9.2. From the ‘Malthusian’ to the ‘Richness’ trap. Multiple balanced 
growth equilibria when fertility is a decreasing function of per-capita income 
according to a ‘Demographic Transition’ pattern 
 

The Malthusian case can be discussed similarly. In this case at most three 
equilibria are possible. The case of a humped 2(.)E  function (Jones 1999) is 
of course more complicated and leads potentially to a more complex 
equilibrium structure. 

 
9.4.3. Remarks on Age Structure and Technical Progress 

An interesting issue regards our current omission of technological progress. 
Besides the simple case of exogenous labour-augmenting technical progress, 
given that our framework focuses on the dynamic role of the population and 
the labour force, a ‘natural’ and consistent way to include technical progress 
would be to endogenise the rate of technical progress /A A�  according to 
Jones’s (1992, 1995) ‘idea-based’ technical progress, or according to the 
Boserupian assumption used by Kremer (1993), and extended in many 
subsequent studies (e.g. Klasen and Nestmann, 2006). These efforts typically 
postulate: / ( , )A A f P yN �  where P is the total population, y income per 
capita, and N  the research productivity per person. Our framework allows us 
– at least in principle – to go into greater depth in that it models more finely 

r (= pop growth rate in the balanced growth state) �G 

� �y r

� �� �1
2 1 / g rE �

E1 

E2 
E3 E4 

E5 
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the relation between technological progress and population including age 
structure. For instance, there are studies documenting that the productivity of 
researchers is strongly related to the individual’s age (Skirbeck, 2003). This 
implies that if, as commonly taken, the number of innovations per unit time 
obeys e.g. a Poisson process at each age, then the expected number of 
innovations in a small interval of time dt might be described as 

1 10
( ) ( , ) ( , )dt P t g a t a t da[�⎡ ⎤⎣ ⎦∫ where 1( )P t  is the absolute number of individuals 

working in the research sector at time t, 1( , )g a t  is the age density of 
individuals working in the research sector of the economy, and ( , )a t[  the 
probability that the single researcher aged a years gives rise to an innovation. 
If we assume that 1( ) ( ) ( )P t t P tV  where 1( )tV  is the fraction of the total 
population working in the research sector we are led to the equation 

1 1 11 0
/ ( ) ( ) ( , ) ( , ) ,A A P t t g a t a t daV [� ⎡ ⎤⎣ ⎦∫�  which can be considered an extension 

of Kremer’s (2003) basic equation with a fine specification of the innovation 
process with respect to age. Many further refinements are of course possible, 
such as (a) adopting more general specifications, such as Jones’s (1992, 
1995) idea that the growth rate of technology is also a non-linear function of 
the level of technology, or that population acts non-linearly on the rate of 
technological change (Grossman and Helpman, 1991; Aghion and Howitt, 
1992), or (b) endogenising the main quantities, e.g. assuming that 

1 1( , ), ( )a y y[ [ V V  , i.e. that they are endogenously related to income per-
capita.  

Obviously the neoclassical descriptive growth perspective considered here 
– which offers a widely used framework (Grimm and Harttgen, 2008) for 
investigating the macroeconomic effects of changes in the age structure with 
the advantage of being well-tailored on classical population mathematics – 
represents just part of the economic growth story. If our aim is a better 
understanding of the possible impact of macro-demographic phenomena, 
such as mortality changes, fertility transitions or population ageing, on the 
economy, we cannot really neglect the micro-level. Demographic change 
affects macroeconomic variables, and macroeconomic variables in turn affect 
individuals’ choices, in terms for instance of education, investment in human 
capital, savings etc. which will ultimately feed back on individuals’ 
demographic choices, and so on. Therefore the reliance on macroeconomic 
descriptive models is a key limitation of the current paper, which is our aim 
to remove in future work. 

 
 

9.5. DISCUSSION 

The chapter reports progress in developing a framework fully integrating age 
structure within descriptive macrodynamic growth models. The ensuing 



 Endogenous age structure in descriptive macroeconomic growth models  211  

 

model can be considered the appropriate dynamic framework underlying 
macro-demographic-macro-simulation models used to investigate the 
implications of changes in the population’s age distribution upon macro-
economic performance. Preliminary analysis of selected subcases, i.e. a 
Solow model descriptively embedding a fertility transition according to the 
conventional demographic viewpoint, indicates that the model can provide 
useful insight on the possible dynamic interaction between population and 
economic growth. Further mathematical steps will be devoted to a thorough 
investigation of the steady state structure under realistic parameter 
constellation, investigation of the stability of balanced growth paths and 
related oscillation issues. For instance, the inclusion of age structure makes 
the appearance of sustained Malthusian oscillations around the possible paths 
of balanced growth a fairly plausible possibility”. 

From a prospective point of view many other demo-economic problems 
can be investigated by the present framework such as the inclusion of: a) 
further endogenous demographic and economic parameters; b) ‘not-only 
scale’ effects of the economy on demographic patterns, such as, the shift in 
childbearing age recently observed in very low-fertility countries (Billari and 
Kohler, 2004); (c) population and labour force immigration (Manfredi and 
Valentini, 2000 and references therein) or the marriage process (Billari et al., 
2000); (d) other macroeconomic growth environments, such as Goodwin and 
AK models; (e) further age-related heterogeneity in economic profiles, as the 
labour productivity across age (Miles, 1999); (f) further issues beyond the 
growth problem, namely how age structure affects income distribution along 
growth paths, according to Fanti and Manfredi (2005). This suggests that the 
present framework is a flexible one deserving further investigation. 
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APPENDIX 

We report some details on the derivation of our framework in an 
intermediate case in which the vital rates are fully endogenised whereas the 
parameters of labour supply remain exogenous. In particular, we assume that 
the participation rate J is compactly supported on (A, B). Restart from the 
basic equations 

 � � � �
� �

Q t
Z t

Q t
 
�

  

 � � � � � �,
B

A

Q t a n a t daJ ∫   

 � � � � � �, , , ,n a t a X P n a t
a t

P� �⎛ ⎞�  �⎜ ⎟� �⎝ ⎠
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0

0, , , ,n t B t a X P n a t daE
�

  ∫   

We assume that the mortality rate can be written as: 

 � � � � � �1 2, , ,a Y a a X PP P P �  (9A.1) 

which amounts to stating that mortality is the sum of a ‘normal’ or baseline 
component, which is only age-dependent, and of a component which also 
reflects the action of the inputs from the economic sub-system. This implies 
that the survival function can be written as  

 � � � � � � � � � � � �1 2 1 2
0 0

exp exp , , ,
a a

a s ds s X t a s P t a ds a a tS P P S S
⎧ ⎫⎡ ⎤ ⎪ ⎪⎡ ⎤ � � � � � �  ⎨ ⎬⎢ ⎥ ⎣ ⎦⎪ ⎪⎩ ⎭⎣ ⎦

∫ ∫   

where 1( )aS  defines survival to ‘normal mortality’. Let us introduce the 
change of variable: 
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and derive a MacKendrick–Von Foerster PDE for u(a, t). We have: 
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i.e.: 
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Since: 

 
� �
� � � �

'
1

1
1

a
a

a

S
P

S
 �  

Then 

  � � � �2 , , ,a tu u a X P u a tP�  �   

and 

 � � � �
� � � � � � � � � �1

1 0

0,
0, , , ,

0

n t
u t B t a X P a u a t daE S

S

�

   ∫   

In addition: 
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Let us now define: 
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Then (9A.1) can be reformulated as  
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Next let us consider the change of variable: 
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,
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and let us derive a MacKendrick–Von Foerster PDE for q(a, t). We have: 
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and therefore 
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The corresponding boundary condition is: 
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Let us finally seek an equation for Z(t). The following holds: 
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If � �2 , ,a X PP  is independent of age the previous expression reduces to 
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By a parts integration  
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We thus obtain 
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and therefore 
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which is a general form for the rate of change of the overall labour supply. 
The final form for the demographic system therefore is: 
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plus the restraint 
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NOTES 
 

*  We warmly thank Anna Variato for her deep discussion of the first draft of this paper at the 
Conference. We also thank two anonymous referees whose suggestions contributed to 
greatly improve the exposition of the paper. Usual disclaimers apply. 

1. We apologise for the use of the notation c ubiquitously used in economics to denote the 
consumption level: unfortunately c is also ubiquitously used in mathematical demography to 
denote population composition. Fortunately no risk of confusion occurs in this chapter since 
we do not consider consumption.  
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